skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rebull, Luisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the inclinations of stellar spin axes is fundamental for studying planet formation and young binary star evolution. Obliquities between exoplanet orbits and their host stars can be traced to the misalignment of circumstellar disks and stellar rotation. In both single and binary systems, these misalignments can impact disk lifetimes and hinder the formation of planets altogether. Our goal is to derive the inclinations for single and binary systems in the Taurus star-forming region using a unique method that relies on estimates of stellar radii. We first identify rotation periods from TESS and K2 light curves for over a hundred sources. In order to test that these periods reflect the stellar rotation of CTTSs, we model the impact of accretion and other activity on our ability to extract the underlying sinusoidal signal we expect from rotation. We combine these data with projected stellar rotation velocities and effective temperatures derived by fitting a synthetic model grid to IGRINS spectra of our sources. Alongside all of these parameters, we use stellar ages and evolutionary track models from the literature to determine inclination. We present the details of this novel approach and the results from our derived distribution of stellar inclinations. 
    more » « less